Penyelesaian dari persamaan 3(2x−1)=2(x+3)+3 adalah ….
a. 2
b. 3
c. -3
d. -2
Jawaban dari pertanyaan di atas adalah B.
Perhatikan konsep berikut.
Penyelesaian soal di atas menggunakan konsep persamaan linear satu variabel.
1. Jumlah atau kurangi kedua ruas dengan bilangan yang sama.
2. Kali atau bagi kedua ruas dengan bilangan yang sama.
Penyelesaian dari persamaan 3(2x−1)=2(x+3)+3 yaitu:
3(2x − 1) = 2(x + 3) + 3
6x – 3 = 2x + 6 + 3
6x – 3 = 2x + 9
6x – 3 – 2x = 2x + 9 – 2x (kedua ruas dikurangi 2x)
4x – 3 = 9
4x – 3 + 3 = 9 + 3 (kedua ruas ditambah 3)
4x = 12
4x/4 = 12/4 (kedua ruas dibagi 4)
x = 3
Dengan demikian penyelesaiannya adalah 3.
Oleh karena itu, jawabannya adalah B.
Rekomendasi lainnya :
- Nilai x dari (4x−1)/3 − x = (x + 1)/5 adalah .... Nilai x dari (4x−1)/3 − x = (x + 1)/5 adalah .... Jawaban yang benar adalah 4 Persamaan linear 1 variabel merupakan persamaan yang mempunyai…
- Tentukanlah himpunan penyelesaian dari… Tentukanlah himpunan penyelesaian dari pertidaksamaan-pertidaksamaan berikut. m. 8 - (1-2x) ≤ 8 + 2(4x-3) Jawabanya: {x ≥ 5/6} Ingat! 1) a(b-c)=ab-ac 2) a+b≤c→a+b-b≤c-b (kedua ruas…
- Tentukan himpunan Penyelesaian dari Sistem Persamaan… Tentukan himpunan Penyelesaian dari Sistem Persamaan Linear Dua Variabel berikut menggunakan metode Substitusi. 5x−3y=1 3x+2y=−7 jawaban untuk soal ini adalah (-1,-2) Soal tersebut merupakan materi…
- Tentukan himpunan penyelesaian persamaan linier satu… Tentukan himpunan penyelesaian persamaan linier satu variabel berikut 3x+7=-5 Jawaban yang benar adalah x = –4. Pembahasan : Persoalan diatas dapat diselesaikan dengan sistem persamaan…
- Tentukan nilai x dari persamaan 12⋅((5x)/6) = 11 Tentukan nilai x dari persamaan 12⋅((5x)/6) = 11 Jawaban yang benar adalah 11/10 Pembahasan: Persamaan linear 1 variabel merupakan persamaan yang mempunyai satu variabel dengan…
- Tentukan himpunan penyelesaian dari SPLDV berikut… Tentukan himpunan penyelesaian dari SPLDV berikut 2x+2y=10, 2x−2y=2 Jawaban dari pertanyaan di atas adalah {3, 2}. Penyelesaian soal di aats menggunakan konsep sistem persamaan linear…
- Tentukan himpunan penyelesaian dari Sistem Persamaan… Tentukan himpunan penyelesaian dari Sistem Persamaan Linear Dua Variabel berikut! 3x+7y=−1, x+3y=5 Jawaban : {-19, 8} Penyelesaian dari sistem persamaan linear dua variabel dapat ditentukan…
- Selesaikan dengan metode campuran untuk menentukan… Selesaikan dengan metode campuran untuk menentukan HP (Himpunan Penyelesaian) dari sistem persamaan linear dua variabel berikut. y+x=2 dan 2y−3x=4 Jawaban dari pertanyaan di atas adalah…
- Tentukanlah himpunan penyelesaian dari… Tentukanlah himpunan penyelesaian dari pertidaksamaan-pertidaksamaan berikut. f. 3x - 3 < 7x + 13 Jawabanya: {x > -4} Ingat! 1) a+b<c→a+b-b<c-b (kedua ruas dikurangi b)…
- Jika 12 × n - (-28) + 135 ÷ (-15) = -77, nilai n = ... Jika 12 × n - (-28) + 135 ÷ (-15) = -77, nilai n = ... Jawaban: -8 Ingat -) Persamaan linear satu variabel: menambah,…
- Tentukan akar-akar Persamaan Kuadrat. 6x²−21x+15=0 Tentukan akar-akar Persamaan Kuadrat. 6x²−21x+15=0 Jawaban dari pertanyaan di atas adalah 5/2 atau 1. Perhatikan konsep berikut. Penyelesaian soal di atas untuk menentukan akar-akar dari…
- Dua bilangan asli berjumlah 20 ,jika bilangan… Dua bilangan asli berjumlah 20 ,jika bilangan pertama 2/3 dari bilangan ke dua .maka hasil kali dua bilangan tersebut adalah... jawaban dari pertanyaan di atas…
- Tentukan himpunan penyelesaian |x−3|=2x+1 Tentukan himpunan penyelesaian |x−3|=2x+1 Jawabannya adalah {-4, 2/3}. Konsep yang digunakan : 📌 Jika |f(x)| = g(x) maka |f(x)|² = (g(x))² 📌 |f(x)|² = (f(x))²…
- Tentukanlah himpunan penyelesaian dari… Tentukanlah himpunan penyelesaian dari pertidaksamaan-pertidaksamaan berikut. q. ((2x-3)/5) ≤ ((12+x)/2) Jawabanya: {x ≤ -66} Ingat! 1) a(b-c)=ab-ac 2) a+b≤c→a+b-b≤c-b (kedua ruas dikurangi b) 3) ax≤c…
- Tentukan nilai x agar kalimat-kalimat berikut benar! −x−4=13 Tentukan nilai x agar kalimat-kalimat berikut benar! −x−4=13 Jawaban yang benar adalah -17. Penyelesaian soal di atas menggunakan konsep persamaan linear satu variabel. 1. Jumlah…