Tentukan himpunan penyelesaian dari Sistem Persamaan Linear Dua Variabel berikut! 3x+7y=−1, x+3y=5

Tentukan himpunan penyelesaian dari Sistem Persamaan Linear Dua Variabel berikut! 3x+7y=−1, x+3y=5

Jawaban : {-19, 8}

Penyelesaian dari sistem persamaan linear dua variabel dapat ditentukan dengan metode eliminasi dan subtitusi, dimana metode elimimasi berarti menghilangkan salah satu variabel untuk mendapatkan nilai variabel lainnya, dan metode subtitusi berarti mengganti nilai suatu variabel untuk mendapatkan nilai variabel lainnya.

Pembahasan,

Diketahui:
3x + 7y = – 1 … (persamaan 1)
x + 3y = 5 … (persamaan 2)

Eliminasi x dari persamaan 1 dan 2, diperoleh:
3x + 7y = -1
x + 3y = 5 (kali 3)

3x + 7y = -1
3x + 9y = 15
—————-(-)
-2y = -16
y = -16/(-2)
y = 8

Subtitusi y = 8 ke persamaan 2, diperoleh:
x + 3y = 5
x + 3(8) = 5
x + 24 = 5
x = 5 – 24
x = -19

Sehingga, himpunan penyelesaian dari Sistem Persamaan Linear Dua Variabel tersebut adalah {-19, 8}

Baca Juga :  Perbandingan panjang kaki sudut siku-siku sebuah segitiga siku-siku adalah 2:3. Jika panjang sisi miring segitiga tersebut adalah 5√13, maka luas segitiga siku-siku tersebut adalah...