Tentukan gradien garis singgung pada kurva x=x²-6x+9 dititik (1,4)

tentukan gradien garis singgung pada kurva x=x²-6x+9 dititik (1,4)

Jawaban yang benar adalah m = -4

Perhatikan beberapa aturan turunan fungsi berikut:
> Jika f(x) = u ± v, maka f'(x) = u’ ± v’
> Jika f(x) = x^(n), maka f'(x) = n.x^(n – 1)
> Jika f(x) = cx, maka f'(x) = c
> Jika f(x) = k, maka f'(x) = 0 ; k = konstanta

Ingat!
Turunan pertama f(x) merupakan gradien garis singgung di titik x, atau f'(x) = m .

Pembahasan,

Asumsi persamaan kurva sebagai berikut:
f(x) = x² – 6x + 9

Jadi,
f'(x) = 2.x^(2-1) – 6 + 0
f'(x) = 2x – 6

Sehingga, gradien garis singgung f(x) di titik (1, 4) atau x = 1 adalah:
f'(x) = m
m = 2(1) – 6
m = 2 – 6
m = -4

Jadi, gradien garis singgung f(x) di titik (1, 4) adalah m = -4

Baca Juga :  Sebuah kamera memiliki jarak fokus lensa 50 mm. Kamera tersebut telah diatur untuk memfokuskan bayangan benda sejauh tak terhingga. Hitunglah seberapa jauh lensa kamera harus digeser agar dapat memfokuskan bayangan benda pada jarak 2 m!