Tentukan nilai ekstrim dan jenisnya dari fungsi f(x) = x⁴ + 2x³ + x³ – 5

tentukan nilai ekstrim dan jenisnya dari fungsi f(x) = x⁴ + 2x³ + x³ – 5

Jawaban yang benar adalah nilai minimum adalah -5 dan nilai maksimum adalah -79/16

Ingat!
Turunan dari f(x)=ax^n adalah f'(x)=anx^(n-1)
Turunan dari f(x)=c adalah f'(x)=0
Jenis titik stasioner:
1. Jika f”(a)<0, maka (a,f(a)) adalah titik balik maksimum fungsi.
2. Jika f”(a)>0, maka (a,f(a)) adalah nilai balik minimum fungsi.
3. Jika f”(a)=0, maka (a,f(a)) adalah titik belok.

Asumsi:
f(x) = x⁴ + 2x³ + x² – 5

Turunan dari f(x) = x⁴ + 2x³ + x² – 5 adalah
f'(x) = 4x³ + 2•3x² + 2x – 0
f'(x) = 4x³ + 6x² + 2x
f'(x) = 2x (2x² + 3x + 1)

Cek f'(x) = 0
2x (2x² + 3x + 1) = 0
2x (2x + 1) (x + 1) = 0
x = 0 atau 2x+1 = 0 atau x+1 = 0
x = 0 atau x = -1/2 atau x = -1

Turunan dari f'(x) = 4x³ + 6x² + 2x adalah
f”(x) = 4•3x² + 6•2x + 2
f”(x) = 12x² + 12x + 2

Untuk x = -1, maka
f”(-1) = 12•(-1)² + 12•(-1) + 2
f”(-1) = 12 – 12 + 2
f”(-1) = 2 > 0
Maka, (-1,f(-1)) merupakan titik balik minimum
f(-1) = (-1)⁴ + 2•(-1)³ + (-1)² – 5
f(-1) = 1 – 2 + 1 – 5
f(-1) = -5 -> nilai minimum

Untuk x = -1/2, maka
f”(-1/2) = 12•(-1/2)² + 12•(-1/2) + 2
f”(-1/2) = 3 – 6 + 2
f”(-1/2) = -1 < 0
Maka, (-1/2,f(-1/2)) merupakan titik balik maksimum
f(-1/2) = (-1/2)⁴ + 2•(-1/2)³ + (-1/2)² – 5
f(-1/2) = 1/16 – 1/4 + 1/4 – 5
f(-1/2) = 1/16 – 80/16
f(-1/2) = -79/16 -> nilai maksimum

Untuk x = 0, maka
f”(0) = 12•0² + 12•0 + 2
f”(0) = 0 + 0 + 2
f”(0) = 2 > 0
Maka, (0,f(0)) merupakan titik balik minimum
f(0) = 0⁴ + 2•0³ + 0² – 5
f(0) = 0 + 0 + 0 – 5
f(0) = -5 -> nilai minimum

Jadi, nilai minimum adalah -5 dan nilai maksimum adalah -79/16

Baca Juga :  Koperasi “Maju Jaya “ mempunyai shu sebesar rp. 30.000.000. alokasi pembagian untuk jasa penjualan 25% dan untuk jasa simpanan 20%. koperasi tersebut mempunyai total modal rp. 80.000.000 dan omset penjualan rp. 60.000.000. bila pak andi sebagai anggota koperasi memiliki simpanan pokok rp. 100.000 dan simpanan wajib rp. rp. 900.000 juga melakukan pembelian senilai rp. 1.500.000, maka shu yang akan diterima oleh pak andi sebesar ....