tentukan persamaan garis singgung pada kurva y=3x² – 10x – 8 dengan abisis 2
Jawaban yang benar adalah y = 2x – 20.
Perhatikan penjelasan berikut ya.
Ingat :
1) Jika terdapat fungsi f(x) = ax^n, maka f'(x) = n · ax^(n – 1).
2) Jika terdapat fungsi f(x) = k, maka f'(x) = 0 dimana k adalah konstanta.
3) Gradien garis singgung kurva y = f(x) dititik (x1, y1) adalah m = f'(x1).
4) Bentuk persamaan garis yang melalui titik (x1, y1) adalah (y – y1) = m(x – x1).
Diketahui :
y = 3x² – 10x – 8.
Tentukan persamaan garis singgung pada kurva tersebut dengan absis 2 (x = 2).
Sebelumnya, tentukan turunan dari y.
y = f(x)
f'(x) = 2 · 3x^(2-1) – (1) · 10x^(1-1) – 0
f'(x) = 6x – 10
Substitusikan x = 2 ke m = f'(x) untuk menentukan gradien.
m = f'(x)
m = 6(2) – 10
m = 12 – 10
m = 2
Substitusikan x = 2 ke y = 3x² – 10x – 8.
y = 3(2)² – 10(2) – 8
y = 3(4) – 20 – 8
y = 12 – 28
y = – 16
Tentukan persamaan garis yang melalui titik (2, – 16) dan m = 2.
(y – y1) = m(x – x1)
(y – (- 16)) = 2(x – 2)
y + 16 = 2x – 4
y = 2x – 4 – 16
y = 2x – 20
Jadi, persamaan garis singgung kurva tersebut adalah y = 2x – 20.
Rekomendasi lainnya :
- Gradien garis singgung kurva y=x²+2x+1 pada titik… Gradien garis singgung kurva y=x²+2x+1 pada titik berabsis 1 sama dengan ... a. 1 b. 2 c. 3 d. 4 e. 5 Ingat! "Jika y…
- Persamaan garis yang melalui (2,−1) bergradien 3/4 adalah … Persamaan garis yang melalui (2,−1) bergradien 3/4 adalah … A. 3x−4y−2=0 B. 3x−4y−10=0 C. 3x+4y−2=0 D. 3x+4y+10=0 Jawaban dari pertanyaan di atas adalah B. Perhatikan…
- Banyak kurva garis lurus yang bisa dibuat dari y =… banyak kurva garis lurus yang bisa dibuat dari y = ax² + bx + c dengan a, b, dan c saling berbeda dipilih dari (…
- Tentukan persamaan garis yang tegak lurus pada garis… Tentukan persamaan garis yang tegak lurus pada garis 2x + 4 y + 3 = 0 dan melalui titik (0,3) Jawaban yang benar adalah –2x…
- Tentukan gradien garis yang melalui titik pusat O… Tentukan gradien garis yang melalui titik pusat O dan titik P(3,9). Jawaban dari pertanyaan di atas adalah 3. Perhatikan konsep berikut. Misalkan terdapat garis yang…
- Gradien garis singgung kurva y=x²–6x+9 di titik (1,… Gradien garis singgung kurva y=x²–6x+9 di titik (1, 4) sama dengan ... a. –4 b. –3 c. –1 d. 5 e. 8 turunan pertama =…
- Persamaan garis yang melalui titik (3, –4) dan tegak… Persamaan garis yang melalui titik (3, –4) dan tegak lurus dengan garis yang memiliki gradien ½ adalah jawaban untuk soal ini adalah y = -…
- Perhatikan grafik berikut! Berapakah gradien garis tersebut? Perhatikan grafik berikut! Berapakah gradien garis tersebut? jawaban untuk soal ini adalah gradien garis tersebut. Soal diatas merupakan materi persamaan garis lurus. Gradien adalah nilai…
- Diketahui persamaan kurva y = x² - 5x , tentukan… diketahui persamaan kurva y = x² - 5x , tentukan persamaan garis singgung pada kurva titik yg berbabsis 2 Pertama cari nilai y dengan memasukkan…
- Persamaan garis yang melalui titik (−2,1) dan (3,5)… Persamaan garis yang melalui titik (−2,1) dan (3,5) adalah .... Jawaban : 4x - 5y + 13 = 0 Persamaan garis yang melalui dua titik,…
- Persamaan garis yang melalui titik (−2,1) dan (3,5)… Persamaan garis yang melalui titik (−2,1) dan (3,5) adalah .... Jawaban : 4x - 5y + 13 = 0 Persamaan garis yang melalui dua titik,…
- Persamaan garis yang melalui titik (-5, 4) dan… Persamaan garis yang melalui titik (-5, 4) dan memiliki gradien -3 adalah.... Jawaban dari pertanyaan di atas adalah 3x + y + 11 = 0.…
- Di antara persamaan berikut, tentukan yang merupakan… Di antara persamaan berikut, tentukan yang merupakan persamaan garis lurus! (i) x−6=y (ii) 2x²+y=6 (iii) x=2/3y (iv) y²+x²=9 (v) x+2y=√(7) (vi) y/3−2x+4²=0 jawaban untuk soal…
- Persamaan garis melalui (−1,2) dan dengan gradien… Persamaan garis melalui (−1,2) dan dengan gradien 4/3 adalah.... A. 4x−3y+10=0 B. 4x−3y−10=0 C. 3x+4y−5=0 D. 3x+4y+5=0 Jawaban : A Perhatikan penjelasan berikut. Ingat. Persamaan…
- Tentukan nilai p pada persamaan garis g: y = x + p… Tentukan nilai p pada persamaan garis g: y = x + p yang menyinggung lingkaran x² + y² - 2x - 4y + 3 =…