lim(x→1) (x−1)/(x² + 2x − 3) = …

lim(x→1) (x−1)/(x² + 2x − 3) = …

Jawaban yang benar adalah 1/4

Untuk mencari nilai suatu limit, dengan mensubstitusikan nilai x ke persamaan limitnya.
Jika mendapatkan hasil 0/0 maka diperlukan manipulasi aljabar salah satunya dengan pemfaktoran.
x²+bx+c = (x+p)(x+q)
p+q = b
pq = c

Pembahasan :
lim(x→1) (x−1)/(x² + 2x − 3) = (1-1)/(1²+2·1-3)
= 0/(1+2-3)
= 0/0
Karena menghasilkan 0/0, maka diperlukan manipulasi aljabar, yaitu dengan pemfaktoran :
lim(x→1) (x−1)/(x² + 2x − 3) = lim(x→1) (x−1)/(x–1)(x+3)
= lim(x→1) 1/(x+3)
= 1/(1+3)
= 1/4

Jadi nilai dari lim(x→1) (x−1)/(x–1)(x+3) = 1/4

Baca Juga :  Perhatikan pernyataan berikut! (1) Jerman memproduksi mobil ternama seperti mercedes (2) Indonesia menjadi anggota ASEAN (3) Indonesia memasarkan produk non migas ke Singapura (4) Indonesia mengirim pertukaran pelajar ke Inggris (5) Jerman melalui PBB mengirim tentara keamanan ke daerah konflik Bentuk kerjasama bilateral negara maju dan berkembang terdapat pada nomor....