Tentukan persamaan garis singgung lingkaran x² + y² + 6x-10y-47=0 yang membentuk sudut 120° terhadap sumbu X positif!

Tentukan persamaan garis singgung lingkaran x² + y² + 6x-10y-47=0 yang membentuk sudut 120° terhadap sumbu X positif!

Jawabannya adalah y = -x√3 – 3√3 + 23 dan y = -x√3 – 3√3 – 13

Grafien garis yang membentuk sudut a terhadap sumbu x positif, yaitu :
m = tan a

Pada persamaan lingkaran x²+y²+Ax+By+C = 0, maka :
Pusat lingkaran (a, b) :
a = -A/2
b = -B/2
Jari-jari lingkaran (r) :
r = √((-A/2)²+(-B/2)²-C)

Persamaan lingkaran yang berpusat di titik (a, b) dan berjari-jari r yaitu :
(x-a)² + (y-b)² = r²

Jika diketahui persamaan lingkaran (x-a)² + (y-b)² = r², maka persamaan garis singgung lingkaran yang bergradien m adalah
y – b = m(x-a) ± r√(m²+1)

Diketahui :
lingkaran x² + y² + 6x-10y-47=0
A = 6
B = -10
C = -47
Pusat lingkaran (a, b) :
a = -A/2 = -6/2 = -3
b = -B/2 = -(-10)/2 = 5
Jari-jari lingkaran (r) :
r = √((-A/2)²+(-B/2)²-C)
= √((-3)²+5²-(-47))
= √(9+25+47)
= √81
= 9
Persamaan lingkaran tersebut dapat dituliskan sebagai :
(x-(-3))²+(y-5)²= 9²
(x+3)²+(y-5)² = 81

Garis singgung lingkaran membentuk sudut 120° terhadap sumbu X positif, maka gradien garis singgung :
m = tan 120°
= -√3

Persamaan garis singgung :
y – 5 = -√3(x+3) ± 9√((-√3)²+1)
y – 5 = -√3(x+3) ± 9√(3+1)
y – 5 = -√3(x+3) ± 9√4
y – 5 = -√3(x+3) ± 9·2
y – 5 = -√3(x+3) ± 18
y – 5 = -√3 · x – √3 · 3 ± 18
y = -x√3 – 3√3 + 5 ± 18

Diperoleh persamaan garis :
a. y = -x√3 – 3√3 + 5 + 18
y = -x√3 – 3√3 + 23

b. y = -x√3 – 3√3 + 5 – 18
y = -x√3 – 3√3 – 13

Jadi persamaan garis singgung lingkaran tersebut adalah y = -x√3 – 3√3 + 23 dan y = -x√3 – 3√3 – 13

Baca Juga :  Gas nitrogen dapat bereaksi dengan gas oksigen dan menghasilkan berbagai macam gas nitrogen oksida salah satunya adalah N2O5 yang terkenal sangat tidak stabil dan mampu mengoksidasi dengan kuat. nama senyawa dari N2O5 adalah