Sebuah segitiga ABC dengan siku-siku di titik A memiliki panjang sisi AB=2√(3) cm dan sisi AC=3√(2) cm. Panjang hipotenusa dari segitiga tersebut adalah…

Sebuah segitiga ABC dengan siku-siku di titik A memiliki panjang sisi AB=2√(3) cm dan sisi AC=3√(2) cm. Panjang hipotenusa dari segitiga tersebut adalah…

jawaban untuk soal ini adalah √30 cm

Soal tersebut merupakan materi teorema phytagoras. Perhatikan perhitungan berikut ya.

Ingat!
Rumus teorema phytagoras
c² = a² + b²
Dengan,
a = alas
b = tinggi
c = merupakan sisi terpanjang pada suatu segitiga siku-siku (sisi miring/hipotenusa)

Diketahui,
segitiga ABC dengan siku-siku di titik A
AB=2√(3) cm
AC=3√(2) cm

Ditanyakan,
Panjang hipotenusa dari segitiga tersebut adalah

Dijawab,
BC² = AB² + AC²
BC² = [2√3]² + [3√(2)]²
BC² = [2 ² (√3)² + [3² (√2)²] BC² = [4 (3) + 9 (2) ] BC= ± √ (12 + 18)
BC = ± √30
karena panjang hipotenusa tidak mungkin negatif maka BC = √30.

Sehingga dapat disimpulkan bahwa, panjang hipotenusa dari Panjang hipotenusa dari segitiga tersebut adalah √30 cm

Baca Juga :  Tangan rahma terkena pisau pada saat membantu ibunya memasak di dapur. Setelah lukanya dibersihkan dan diobati, beberapa saat kemudian darah dari lukanya berhenti. Bagian darah yang berperan pada penutupan luka tersebut adalah ....